Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 Poly[($\mu_{4}-5$-bromopyridine-3-sulfonato)silver(I)]

Ying-Bing Lu* and Fang-Mei Jian

College of Chemistry and Chemical Engineering, Gannan Normal University,
Ganzhou 341000, People's Republic of China
Correspondence e-mail: yblu@fjirsm.ac.cn

Received 27 November 2011; accepted 22 December 2011
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.038 ; w R$ factor $=0.152$; data-to-parameter ratio $=12.0$.

The silver(I) complex, $\left[\operatorname{Ag}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{BrNO}_{3} \mathrm{~S}\right)\right]_{n}$, was obtained by reaction of AgNO_{3} and 5-bromopyridine-3-sulfonic acid. The Ag^{I} ion is coordinated by an $\mathrm{O}_{3} \mathrm{~N}$ donor set in a slightly distorted tetrahedral geometry. The Ag^{I} ions are linked by $\mu_{4^{-}}$ 5-bromopyridine-3-sulfonate ligands, forming a layer parallel to (100). The layers are further connected via $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen-bonding interactions into a three-dimensional supramolecular network. The $\mathrm{Ag} \cdots \mathrm{Ag}$ separation is 3.0159 (6) \AA, indicating the presence of argentophilic interactions.

Related literature

For background information on pyridinesulfonato ligands, see: Chandler et al. (2002); Makinen et al. (2001); May \& Shimizu (2005). For similar $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonding, see: Lu et al. (2011).

Experimental

Crystal data
$\left[\mathrm{Ag}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{BrNO}_{3} \mathrm{~S}\right)\right]$
$M_{r}=344.92$
Monoclinic, $C 2 / c$
$a=20.103$ (3) A
$b=5.0634$ (9) \AA
$c=16.036$ (3) \AA
$\beta=110.142(2)^{\circ}$
$V=1532.5(5) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=8.08 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.20 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
$T_{\text {min }}=0.512, T_{\text {max }}=0.746$
4188 measured reflections 1310 independent reflections 1204 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038 \quad 2$ restraints
$w R\left(F^{2}\right)=0.152 \quad$ H-atom parameters constrained
$S=1.01$
$\Delta \rho_{\text {max }}=0.88 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-1.72 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{Br} 1^{\mathrm{i}}$	0.93	2.92	$3.832(3)$	168

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL.

We acknowledge financial support from the NSF of Jiangxi Provincial Education Department (Nos. GJJ10717 and 2009ZDG02800) and the Key Laboratory of Jiangxi University for Function of Materials Chemistry.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2045).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chandler, B. D., Cote, A. P., Cramb, D. T., Hill, J. M. \& Shimizu, G. K. H. (2002). Chem. Commun. pp. 1900-1901.

Lu, Y.-B., Cai, L.-Z., Zou, J.-P., Liu, X., Guo, G.-C. \& Huang, J.-S. (2011). CrystEngComm, 13, 5724-5729.
Makinen, S. K., Melcer, N. J., Parvez, M. \& Shimizu, G. K. H. (2001). Chem. Eur. J. 7, 5176-5182.
May, L. J. \& Shimizu, G. K. H. (2005). Chem. Commun. pp. 1270-1272.
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.

supplementary materials

$\operatorname{Poly}\left[\left(\mu_{4}\right.\right.$-5-bromopyridine-3-sulfonato $)$ silver(I)]

Y.-B. Lu and F.-M. Jian

Comment

As bridging ligands, sulfonate ligands and their derivatives have drawn much attention owing to their diverse coordination modes, forming numerous coordination complexes. In this paper, we report the new title compound $\mathbf{1}$, which displays a two-dimensional layer structure.

X-ray diffraction analyses reveal that the title compound crystallizes in the $C 2 / c$ group space. In the asymmetrical unit of 1 (Fig. 1), there is one crystallographically independent Ag^{+}ion and one 5-Bromopyridine-3-sulfonato ligand. The Ag 1 atom is in a distorted tetrahedral coordination environment and coordinated by one O 1 atom, one O 2 atom, one O 3 atom and N1 atom from four different 5-Bromopyridine-3-sulfonato ligands. As shown in Figure 2, the Ag1 ions are linked by three oxygen atoms from sulfonate groups to form 1-D chain. Interestingly, the $\mathrm{Ag} \cdots \mathrm{Ag}$ separation in the $[\mathrm{Ag} 1] 2$ dimers is 3.0159 (6) \AA, which is much shorter than the sum of van der Waals radii for silver ($3.4 \AA$), suggesting significant silver-silver interactions. These chains are further connected through N 1 atoms from $\mu_{4}-5$-Bromopyridine-3-sulfonato ligands to generate a two-dimensional layer. The layers are connected via $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{Br} 1$ hydrogen bonding interactions (Lu et al., 2011) into a three-dimensional supramolecular architecture (Fig. 3 and Table 1).

Experimental

$\mathrm{AgNO}_{3}(85 \mathrm{mg}, 0.5 \mathrm{mmol})$ and bromopyridinesulfonato ligands ($103 \mathrm{mg}, 0.5 \mathrm{mmol}$) were dissolved in 20 ml water, stirring for 2 h . The resulting solution was filtrated and allowed to evaporate slowly at room temperature. Colorless block crystals appeared after 1 week. Yield based on Ag : 15%.

Refinement

H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic), and refined in riding mode with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$. The abnormal reflections $(-712),(-423),(800),\left(\begin{array}{lll}1 & 1 & 6\end{array}\right)(-402),(-206)$ and (-513) have been omitted during the refinement. The "delu 0.005 C 1 N 1 Ag 1 O 1 " has been employed during the refinement to modify the small difference of anisotropic displacement parameters along chemical bonds.

Figures

Fig. 1. ORTEP drawing of 1 with 50% thermal ellipsoids with hydrogen atoms being omitted for clarity. (Symmetry codes: A: $x, 1+y, z ; \mathrm{B}: 1 / 2-x, 3 / 2-y,-z ; \mathrm{C}: x, 1-y,-1 / 2+z ; \mathrm{D}: x, 1-$ $y, 1 / 2+z ;$).

supplementary materials

Fig. 2. View of two-dimensional layer of $\mathbf{1}$ along the a axis. The yellow-green bonds represent the 1-D chain originating from Ag and SO_{3} groups of 5-Bromopyridine-3-sulfonato ligands. The silver-silver interactions are represented as orange dashed lines (H atoms are omitted for clarity).

Poly[(μ_{4}-5-bromopyridine-3-sulfonato)silver(I)]

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Ag}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{BrNO}_{3} \mathrm{~S}\right)\right]} \\
& M_{r}=344.92 \\
& \text { Monoclinic, } C 2 / c \\
& a=20.103(3) \AA \\
& b=5.0634(9) \AA \\
& c=16.036(3) \AA \\
& \beta=110.142(2)^{\circ} \\
& V=1532.5(5) \AA^{3} \\
& Z=8
\end{aligned}
$$

$F(000)=1296$
$D_{\mathrm{x}}=2.990 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: not measured K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$\theta=2.2-25^{\circ}$
$\mu=8.08 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Blcok, colorless
$0.20 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
graphite
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
$T_{\text {min }}=0.512, T_{\text {max }}=0.746$
4188 measured reflections

1310 independent reflections
1204 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-23 \rightarrow 23$
$k=-6 \rightarrow 6$
$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$	Hydrogen site location: inferred from neighbouring sites
$w R\left(F^{2}\right)=0.152$	H -atom parameters constrained
$S=1.01$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.132 P)^{2}\right]$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
1310 reflections
$(\Delta / \sigma)_{\text {max }}=0.009$
109 parameters
2 restraints
$\Delta \rho_{\max }=0.88$ e \AA^{-3}
$\Delta \rho_{\min }=-1.72 \mathrm{e} \AA^{-3}$
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Ag 1	$0.325354(14)$	$0.79247(6)$	$0.004298(16)$	$0.0399(8)$
Br 1	$0.505370(16)$	$0.92599(7)$	$0.38247(2)$	$0.03684(10)$
S 1	$0.31936(4)$	$0.26125(15)$	$0.13294(5)$	$0.0237(2)$
N 1	$0.36109(14)$	$0.3610(6)$	$0.39356(17)$	$0.0280(7)$
O 1	$0.36615(13)$	$0.3588(6)$	$0.08721(15)$	$0.0417(6)$
O 2	$0.25004(15)$	$0.3786(6)$	$0.10181(17)$	$0.0468(8)$
O 3	$0.31813(13)$	$-0.0272(5)$	$0.13609(16)$	$0.0365(7)$
C 1	$0.33643(16)$	$0.2719(7)$	$0.3129(2)$	$0.0252(8)$
H 1 A	0.3026	0.1385	0.2993	0.030^{*}
C 2	$0.35925(15)$	$0.3708(6)$	$0.24497(18)$	$0.0201(7)$
C 3	$0.40983(15)$	$0.5648(7)$	$0.26565(19)$	$0.0237(8)$
H 3 A	0.4265	0.6324	0.2226	0.028^{*}
C4	$0.43547(15)$	$0.6575(7)$	$0.3514(2)$	$0.0269(8)$
C5	$0.41094(16)$	$0.5505(7)$	$0.4151(2)$	$0.0285(9)$
H5A	0.4292	0.6107	0.4733	0.034^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	$0.05584(14)$	$0.04198(16)$	$0.02679(13)$	$0.01450(12)$	$0.02051(11)$	$0.00050(10)$
Br 1	$0.03597(16)$	$0.0366(2)$	$0.03715(17)$	$-0.00643(15)$	$0.01160(13)$	$-0.00657(15)$
S 1	$0.0333(3)$	$0.0199(4)$	$0.0160(3)$	$0.0027(3)$	$0.0060(3)$	$-0.0009(3)$
N 1	$0.0360(12)$	$0.0253(13)$	$0.0241(11)$	$-0.0001(12)$	$0.0120(9)$	$-0.0010(11)$
O1	$0.0639(13)$	$0.0433(10)$	$0.0244(9)$	$-0.0083(12)$	$0.0236(9)$	$0.0060(9)$
O2	$0.0498(13)$	$0.0449(14)$	$0.0294(12)$	$0.0224(13)$	$-0.0071(11)$	$-0.0057(12)$
O3	$0.0608(13)$	$0.0185(11)$	$0.0306(10)$	$-0.0012(11)$	$0.0164(10)$	$-0.0084(9)$
C1	$0.0207(11)$	$0.0258(16)$	$0.0285(14)$	$-0.0027(12)$	$0.0075(11)$	$0.0065(12)$

C2	$0.0308(12)$	$0.0156(13)$	$0.0149(11)$	$0.0024(12)$	$0.0091(10)$	$0.0012(11)$
C3	$0.0241(11)$	$0.0291(17)$	$0.0216(12)$	$0.0056(12)$	$0.0126(10)$	$0.0014(12)$
C4	$0.0160(11)$	$0.0322(17)$	$0.0297(15)$	$0.0008(14)$	$0.0044(11)$	$0.0033(14)$
C5	$0.0294(13)$	$0.0385(19)$	$0.0159(13)$	$0.0021(15)$	$0.0056(11)$	$0.0012(13)$

Geometric parameters (\AA, ${ }^{\circ}$)

Ag1-N1 ${ }^{\text {i }}$	2.270 (3)
$\mathrm{Ag} 1-\mathrm{O} 3^{\text {ii }}$	2.352 (3)
$\mathrm{Ag} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.488 (3)
Ag1-O1	2.552 (3)
Ag1—Ag1 ${ }^{\text {iii }}$	3.0159 (8)
$\mathrm{Br} 1-\mathrm{C} 4$	1.894 (3)
S1-O2	1.437 (3)
$\mathrm{S} 1-\mathrm{O} 3$	1.462 (3)
S1-O1	1.463 (3)
S1-C2	1.785 (3)
N1-C1	1.297 (4)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{O} 3{ }^{\text {ii }}$	165.92 (9)
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{O} 2{ }^{\text {iii }}$	88.66 (10)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Ag} 1-\mathrm{O} 2{ }^{\text {iii }}$	98.22 (9)
$\mathrm{N} 1^{\mathrm{i}}$ - $\mathrm{Ag} 1-\mathrm{O} 1$	88.93 (10)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Ag} 1-\mathrm{O} 1$	88.52 (8)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ag} 1-\mathrm{O} 1$	160.60 (9)
$\mathrm{N} 1^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{Ag} 1{ }^{\text {iii }}$	119.93 (7)
$\mathrm{O} 3{ }^{\text {ii }}$ - $\mathrm{Ag} 1 — \mathrm{Ag} 1{ }^{\text {iii }}$	74.01 (6)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ag} 1-\mathrm{Ag} 1{ }^{\text {iii }}$	72.45 (7)
O1—Ag1—Ag1 ${ }^{\text {iii }}$	92.22 (6)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	113.53 (16)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	113.59 (17)
O3-S1-O1	112.07 (17)
O2-S1-C2	105.49 (15)
O3-S1-C2	106.43 (14)
O1-S1-C2	104.83 (15)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	120.0 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ag} 1^{\text {iv }}$	123.1 (2)
C5-N1-Ag1 ${ }^{\text {iv }}$	116.9 (2)

$\mathrm{N} 1-\mathrm{C} 5$	$1.344(4)$
$\mathrm{N} 1-\mathrm{Ag} 1^{\text {iv }}$	$2.270(3)$
$\mathrm{O} 2-\mathrm{Ag} 1^{\mathrm{iii}}$	$2.488(3)$
$\mathrm{O} 3-\mathrm{Ag} 1^{\mathrm{v}}$	$2.352(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.411(5)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.370(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.374(4)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.388(5)$
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9300
$\mathrm{~S} 1-\mathrm{O} 1-\mathrm{Ag} 1$	$113.87(15)$
$\mathrm{S} 1-\mathrm{O} 2-\mathrm{Ag} 1^{\mathrm{iii}}$	$143.5(2)$
$\mathrm{S} 1-\mathrm{O} 3-\mathrm{Ag} 1^{\mathrm{V}}$	$110.48(15)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$122.2(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	118.9
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	118.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.6(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{S} 1$	$120.3(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$	$120.9(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$118.6(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.7
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.8(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 1$	$119.8(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Br} 1$	$120.4(2)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$120.8(3)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.6
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.6

Symmetry codes: (i) $x,-y+1, z-1 / 2$; (ii) $x, y+1, z$; (iii) $-x+1 / 2,-y+3 / 2,-z$; (iv) $x,-y+1, z+1 / 2$; (v) $x, y-1, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{Br}^{\mathrm{vi}}$	0.93	2.92	$3.832(3)$	168.

Symmetry codes: (vi) $-x+1, y,-z+1 / 2$.

sup-4

Fig. 1

Fig. 2

Fig. 3

